A Stochastic Quasi-Newton Method for Online Convex Optimization

نویسندگان

  • Nicol N. Schraudolph
  • Jin Yu
  • Simon Günter
چکیده

We develop stochastic variants of the wellknown BFGS quasi-Newton optimization method, in both full and memory-limited (LBFGS) forms, for online optimization of convex functions. The resulting algorithm performs comparably to a well-tuned natural gradient descent but is scalable to very high-dimensional problems. On standard benchmarks in natural language processing, it asymptotically outperforms previous stochastic gradient methods for parameter estimation in conditional random fields. We are working on analyzing the convergence of online (L)BFGS, and extending it to nonconvex optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Quasi-Newton Optimization Methods for Machine Learning

This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...

متن کامل

On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization

We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...

متن کامل

A Variance Reduced Stochastic Newton Method

Quasi-Newton methods are widely used in practise for convex loss minimization problems. These methods exhibit good empirical performance on a wide variety of tasks and enjoy super-linear convergence to the optimal solution. For largescale learning problems, stochastic Quasi-Newton methods have been recently proposed. However, these typically only achieve sub-linear convergence rates and have no...

متن کامل

A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization

An algorithm for stochastic (convex or nonconvex) optimization is presented. The algorithm is variable-metric in the sense that, in each iteration, the step is computed through the product of a symmetric positive definite scaling matrix and a stochastic (mini-batch) gradient of the objective function, where the sequence of scaling matrices is updated dynamically by the algorithm. A key feature ...

متن کامل

IQN: An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate

The problem of minimizing an objective that can be written as the sum of a set of n smooth and strongly convex functions is challenging because the cost of evaluating the function and its derivatives is proportional to the number of elements in the sum. The Incremental Quasi-Newton (IQN) method proposed here belongs to the family of stochastic and incremental methods that have a cost per iterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007